meet at the known critical point of 1733° K. Independently, the law of rectilinear diameter leads one to practically the same value. We thus consider the critical viscosity of mercury equal to 0.41 cp. at 1733° K. to be a good estimate. To illustrate this further, water has the viscosity equal to 1.00 cp. at 20° ; thus mercury, at the critical point, is 2.5 times as fluid as water at 20° .

Since the critical density² is equal to 5.0 g./cm.^3 , the critical *kinematic* viscosity of mercury equals 0.082 centistoke.

The same method may be used to estimate the critical viscosity of a number of other metals whose η_{1ig}

and η_{satd} vap are known over a substantial temperature range. Such is the case of the alkali metals; the critical temperatures and densities of sodium, potassium, rubidium, and cesium have been estimated (see ref. 3).

Self-diffusion is another transport property which is closely related to viscosity. In a number of papers of the author²⁶ it has been stressed that the values of the diffusion constant, D, of metals can be obtained from η thanks to the Stokes-Einstein relation.

⁽²⁶⁾ The latest one is A. V. Grosse, Science, 145, 50 (1964).